Expression and functional characterization of choline transporter in human keratinocytes.
نویسندگان
چکیده
Choline is essential for synthesis of the major membrane phospholipid phosphatidylcholine. Moreover, it serves as a precursor for synthesis of the neurotransmitter acetylcholine (ACh). Keratinocytes of the epidermis synthesize and release ACh. The uptake of choline is the rate-limiting step in both ACh synthesis and choline phospholipid metabolism, and it is a prerequisite for keratinocyte proliferation. However, the nature of the choline transport system in keratinocytes is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake into cultured human keratinocytes. Choline uptake into keratinocytes was independent of extracellular Na(+), saturable, and mediated by a single transport system with an apparent Michaelis-Menten constant of 12.3 muM. Choline uptake was reduced when the keratinocyte membrane potential was depolarized by high K(+). These results provide evidence that the choline transport activity is potential-sensitive. Various organic cations inhibit the choline transport system. RT-PCR demonstrated that keratinocytes expressed mRNA for choline transporter-like protein 1 (CTL1), mainly the CTL1a subtype. The present biochemical and pharmacological data suggest that CTL1a is functionally expressed in human keratinocytes and is responsible for the uptake of choline and organic cations in these cells.
منابع مشابه
PT712. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells
In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and ...
متن کاملDIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES
Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ova...
متن کاملIn vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold
Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملCholine transporters in human lung adenocarcinoma: expression and functional implications.
Choline is an essential nutrient for cell survival and proliferation, however, the expression and function of choline transporters have not been well identified in cancer. In this study, we detected the mRNA and protein expression of organic cation transporter OCT3, carnitine/cation transporters OCTN1 and OCTN2, and choline transporter-like protein CTL1 in human lung adenocarcinoma cell lines A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of pharmacological sciences
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2009